

NITRIC OXIDE IN THE NERVOUS SYSTEM

J. Zhang and S. H. Snyder*

Johns Hopkins University School of Medicine, Departments of Neuroscience, Pharmacology and Molecular Sciences, and Psychiatry, 725 N. Wolfe Street, Baltimore, Maryland 21205

KEY WORDS: cytochrome P450, heme, long-term potentiation, penile erection, endothelial-derived relaxing factor

ABSTRACT

Nitric oxide (NO) has only recently been appreciated as a normal biologic substance with a role in signal transduction. It was first identified as endothelial-derived relaxing factor in blood vessels and as the mediator of the tumoricidal and bactericidal actions of macrophages. NO's role as a neural messenger may be even more prominent. Biosynthesis of NO involves oxidation of the guanidine group of arginine with stoichiometric formation of citrulline. NO synthase is one of the most extensively regulated enzymes in biology. In the periphery, NO is a likely transmitter of nonadrenergic, noncholinergic neurons. In the brain, NO neurons mediate action of glutamate acting at *N*-methyl-D-aspartate (NMDA) receptors. Excess release of NO appears to account for a major portion of neural damage following vascular stroke.

INTRODUCTION

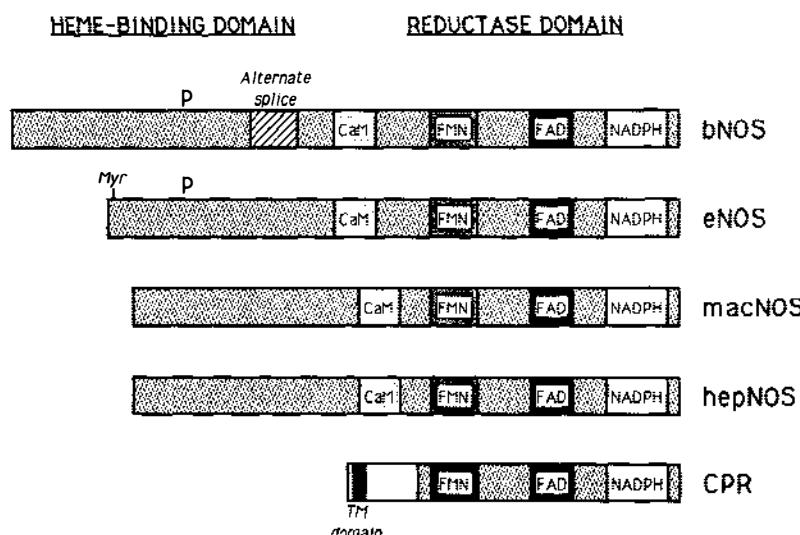
The discovery of nitric oxide (NO) as a neurotransmitter and recent evidence that carbon monoxide (CO) may also be a transmitter (1, 2) have radically altered thinking about synaptic transmission. Since NO is a labile free radical, it is not stored in synaptic vesicles as are other transmitters. Instead, it must be synthesized on demand from its precursor L-arginine by NO synthase (NOS), which must be capable of rapid modulation. Not surprisingly, NOS is one of the most regulated enzymes in biology. NO cannot be released by exocytosis but instead simply diffuses from nerve terminals. Rather than bind-

Present Address: Guilford Pharmaceuticals Inc., 6611 Tributary Street, Baltimore, Maryland 21224

ing to protein receptors on adjacent cells, it diffuses into them. NO directly interacts with targets that would normally be regarded as second messengers. In contrast to the reversible binding to plasma membrane receptors characteristic of most neurotransmitters, NO forms covalent linkages to intracellular proteins. There may be a substantial number of targets for NO; best characterized is guanylyl cyclase (GC). Inactivation of NO presumably involves diffusion away from target sites. Covalent linkage to small molecules such as superoxide and large proteins may also inactivate synaptically released NO.

One fascinating feature of NO, shared with some neurotransmitters such as peptides, is its involvement in multiple biological processes unrelated to synaptic transmission. NO was first discovered as a substance formed by macrophages, responsible for their ability to kill tumor cells and fungi. Investigations into nitrosamines as carcinogens led to the demonstration that nitrates are produced endogenously. Because mice with a genetic absence of macrophages fail to produce urinary nitrate, the macrophage was identified as a source. The dependence of macrophage production of nitrite upon external arginine led to a characterization of NOS in these cells (3–6).

A second major role of NO is as endothelium-derived relaxing factor. NO was detected as the active metabolite of nitroglycerin and other organic nitrates that dilate blood vessels by stimulating the formation of cyclic GMP through the activation of GC (7, 8). Furchtgott & Zawadzki (9) showed that blood vessel relaxation in response to acetylcholine and other substances requires release by the endothelial lining of a labile endothelium-derived relaxing factor, which was subsequently identified as NO (10, 11).


The dramatic properties of NO in macrophages and blood vessels led to suspicion that NO is formed in the brain (12). Definitive evidence for a role of NO in synaptic transmission came from observations that the excitatory neurotransmitter glutamate acting at *N*-methyl-D-aspartate (NMDA) receptors stimulates the formation of NO (13) and that this stimulation is blocked by NOS inhibitors such as nitroarginine and methylarginine, which also block the NMDA stimulation of cGMP in brain slices (13, 14).

NO BIOSYNTHESIS

Though only a single enzyme is involved in NO biosynthesis, the pathway is complex because NOS is an extraordinarily well-regulated enzyme. It oxidizes the guanidino group of L-arginine in a process that utilizes five electrons and gives rise to NO and equal amounts of L-citrulline (15). Numerous attempts to purify NOS failed because enzyme activity was lost rapidly during purification procedures. The discovery that calmodulin is required for NOS activity in the brain enabled us to purify the enzyme to homogeneity (16). We subsequently cloned the cDNA for the brain enzyme neuronal NOS (nNOS) (17).

This step permitted us (18) and others (19, 20) to clone the macrophage form (mNOS). Still other workers cloned endothelial NOS (eNOS) (21–23). Recently cloned inducible forms of NOS from hepatocytes and chondrocytes (24, 25) may mediate the formation of NO in an inducible fashion that has been observed in many tissues.

NOS oxidizes arginine to NO. NOS uses not one electron donor but five. Cloned NOS possesses recognition sites for NADPH, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) (Figure 1). Biochemical analysis reveals both FAD and FMN bound to NOS (26). Cytochrome P450 reductase (CPR) is the only mammalian enzyme that also uses NADPH, FMN, and FAD as electron donors. CPR donates electrons to the liver's drug metabolizing cytochrome P450 enzymes. The carboxyl half of NOS displays about 60% amino acid identity to CPR. It is therefore likely that early in evolution CPR donated electrons for NOS and that at some point CPR and NOS fused. NOS also utilizes tetrahydrobiopterin as an electron-donating cofactor (27–29). Recently, we (30) and others (31–33) showed that NOS contains bound heme that reacts with CO to form a species that absorbs at 450 nm. Accordingly,

Figure 1 Sequence homologies of NOS isoforms. All NOSs cloned thus far contain regions homologous to cytochrome P450 reductase and coenzyme binding sites that reflect the oxidative mechanism of NO synthesis. Consensus binding sites for flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), calmodulin (CaM), and heme are conserved for all cloned NOSs. Phosphorylation site (P) for cAMP-dependent kinase is conserved between the neuronal and endothelial forms. The human hepatic NOS contains three consensus sequences for cAMP-dependent phosphorylation. The endothelial NOS has a myristylation site (M) at its amino-terminus.

NOS has properties of a cytochrome P450 enzyme. The exact mechanism whereby electron donation takes place in NOS is unclear. It is likely that electrons proceed from NADPH to FAD, FMN, and in turn to heme to promote interactions with molecular oxygen, with tetrahydrobiopterin playing some role that is not yet established definitively.

NOS enzymes are constitutive or inducible. The brain form and the endothelial form are regarded as constitutive in that stimuli enhancing NO formation do not elicit new enzyme protein synthesis. Thus, in the brain, glutamate acting at NMDA receptors triggers an influx of calcium that binds to calmodulin to activate NOS. This explains the remarkable ability of glutamate to triple NOS activity in brain slices in a matter of seconds and reflects a novel mode of synaptic information transfer. In blood vessels, stimulation of acetylcholine or bradykinin receptors on endothelial cells activates the phosphoinositide cycle to generate calcium that stimulates NOS. The designation of neuronal NOS as constitutive is not altogether accurate, as recent studies show that new synthesis of nNOS occurs, especially following neuronal damage. For instance, in the spinal cord, lesions of the ventral root lead to the appearance of newly immunoreactive NOS neurons in the spinal cord (34), and nNOS mRNA is induced in dorsal root ganglia following peripheral axotomy (35).

mNOS is not stimulated by calcium despite the fact that it possesses tightly bound calmodulin (36). Calmodulin is so intimately associated with mNOS that it does not dissociate; thus the enzyme is apparently always calcium activated. Macrophages normally possess no detectable NOS protein. Stimuli such as interferon-gamma and lipopolysaccharide (LPS) lead to new NOS protein formation over 2–4 h to produce the NO involved in inflammation. Endotoxin stimulates inducible NOS activity in many animal tissues that do not possess macrophages (37). An inducible NOS cloned from liver cells (24) and chondrocytes (25) may represent a prototype for nonmacrophage-inducible NOS. Because the NO system is simple, inducible NOS may represent a primitive sort of immune system that repels invading microorganisms.

NOS is regulated by phosphorylation. All cloned NOS isoforms possess consensus sequences for phosphorylation by cyclic AMP-dependent protein kinase (PKA). Biochemical studies demonstrate that nNOS is phosphorylated by PKA, protein kinase C (PKC), cyclic GMP-dependent protein kinase (PKG), and calcium calmodulin-dependent protein kinase (CAM-K) (38–41). Though investigators disagree on this point, it appears likely that phosphorylation by all of these enzymes decreases catalytic activity (41). Phosphorylation may interact with other modes of enzyme modulation. For instance, NO stimulates GC to form cyclic GMP which via PKG can inhibit NOS. Calcium-calmodulin directly activates the enzyme, but phosphorylation via CAM-K inhibits. Similarly, calcium activates PKC which in turn inhibits NOS through phosphorylation.

Regulation of mNOS expression derives from transcription factor binding to the regulatory region of the gene. Characterization of the promoter region of macrophage NOS by us (42) and others (43) has revealed multiple regulatory sites. Two distinct regulatory regions exist upstream of the TATA box, which itself is 30 bases upstream of the transcription start site. Region 1, 50–200 base pairs upstream of the start site, contains LPS-related response elements. Region 2, 900–1000 bases upstream, does not directly stimulate NOS expression but instead provides a further enhancement to the 75-fold increase in NOS expression that can be elicited by Region 1. Region 2 contains recognition sites for interferon-gamma-related transcription factors.

This pattern of gene organization can explain certain aspects of inflammation. In sepsis following an overwhelming bacterial infection, LPS is released from bacterial cell walls and circulates throughout the body eliciting inflammatory responses. By contrast, interferon-gamma is released locally, augmenting inflammatory responses only in certain populations of cells close to the site of interferon-gamma release. Thus, the local elaboration of interferon-gamma by infiltrating lymphocytes primes macrophages to give a maximal response to circulating LPS. In this way, maximal production of NO occurs primarily in cells at the site of the infiltrating lymphocytes—cells located in a position to attack the invading microorganisms without damaging other tissue.

NO in Neurotransmission and Neural Development

Localization of neuronal NOS has helped clarify many of its functions. In areas such as the cerebral cortex, hippocampus, and corpus striatum, NOS neurons compose only 1–2% of all neuronal cells; scattered in no obvious pattern, they make up medium-to-large aspiny neurons (44). By contrast, in the cerebellum NOS occurs in a high proportion of certain cell types. It occurs in almost all granule and basket cells but in no Purkinje cells. The mode of NO action in specific synaptic systems is best exemplified in the cerebellum. Glutamate augments cyclic GMP concentrations in Purkinje cells, which receive input from granule and basket cells. Granule and basket cells possess NMDA receptors. Stimulation by glutamate thus triggers formation of NO, which diffuses to the Purkinje cells to activate GC. Whether GC is a universal target for NO is not clear. If NO transmission exclusively utilized GC and if all GC in the brain were associated with NO, then GC and NOS localizations would be essentially the same. However, their localizations differ markedly, whereas localizations of GC and heme oxygenase-2 (the CO-synthesizing enzyme) are similar (1).

Clues into neurotransmitter function often come from co-localization with other transmitters. The work of Hokfelt (45) has revealed that virtually all neurons in the brain contain more than one neurotransmitter. In the cerebellum,

NOS occurs in the glutamate-containing granule cells and in basket cells that contain GABA. Some but not all the cerebral cortical NOS neurons also contain GABA. In the corpus striatum, NOS neurons stain for somatostatin and neuropeptide Y. On the other hand, in the pedunculopontine nucleus of the brain stem, NOS neurons stain for choline acetyltransferase but lack somatostatin and neuropeptide Y (46).

NO influences neurotransmitter release. NOS inhibitors block the release of transmitters in various systems. In synaptosomes of the brain, neurotransmitter release evoked by stimulation of NMDA receptors is blocked by nitroarginine, whereas release elicited by potassium depolarization is unaffected (47). Glutamate apparently acts on the NMDA receptors of NOS terminals to stimulate the formation of NO. NO diffuses to adjacent terminals and increases neurotransmitter release. Thus blockade of NO formation inhibits release. On the other hand, potassium depolarization triggers release from all terminals such that effects of NO are not detectable.

PC-12 cells develop neuronal properties when stimulated with nerve growth factor. Acetylcholine release in response to depolarization in PC-12 cells is markedly stimulated after about 8 days of nerve growth factor application (48, 49). NOS staining and catalytic activity are not apparent in untreated cells but develop 8 days after nerve growth factor stimulation, coincident with enhancement of transmitter release. Acetylcholine and dopamine release from PC-12 cells is blocked by NOS inhibitors and reversed by L-arginine (47).

The peripheral autonomic nervous system has provided the most definitive evidence that NO is a neurotransmitter. In our initial mapping studies we observed NOS neurons in the myenteric plexus from the esophagus to the rectum (46, 50). Physiologic depolarization of these neurons elicits relaxation of smooth muscle associated with peristalsis. Blockade of this process by NOS inhibitors indicates that NO is the transmitter (51-54).

Further evidence that NO functions in the peripheral autonomic innervation of the gastrointestinal system comes from mice in which nNOS has been "knocked out" by homologous recombination (55). These mice display markedly enlarged stomachs and hypertrophy of the pyloric sphincter (55). Similar abnormalities occur in the human disease infantile hypertrophic pyloric stenosis. Histochemical studies of stomachs of such patients reveal an absence of NADPH diaphorase (NDP) staining in the pyloric region (56). This observation may help to account for the symptoms of the disease. The relaxing effects of NO would normally facilitate propulsion of food through the pyloric sphincter, just as NO is presumably involved in the relaxation phase of peristalsis throughout the gut. Absence of NO would account for an abnormally tight sphincter.

nNOS is found in the endothelial layer of blood vessels, but it also occurs in autonomic nerves in the outer, adventitial layers of some vessels, especially

larger ones (50). In the retina (57) and cerebral cortex (58), these neurons arise from cells in the sphenopalatine ganglia at the base of the skull. About 40% of these NOS neurons contain the neuropeptide vasoactive intestinal polypeptide (VIP), which may function as a cotransmitter regulating blood vessel relaxation. In the penis, NOS neurons are particularly prominent in cavernous nerve processes innervating the deep cavernosal arteries and sinusoids of the corpora cavernosae, the erectile bodies of the penis whose engorgement with blood leads to penile erection (59). Electrical stimulation of the cavernous nerve in intact rats produces prominent penile erection that is blocked by low doses of intravenously administered NOS inhibitors (59). Nerve stimulation-induced relaxation of isolated corpus cavernosum strips is also blocked by NOS inhibitors (60). These findings establish NO as the transmitter of neurons regulating penile erection.

In the adrenal gland, NOS occurs in ganglion cells and fibers in the adrenal medulla (50), where it may regulate blood flow (61). The function of the prominent NOS neuronal fibers in the posterior pituitary has not been clarified (50).

NO may participate in long-term potentiation (LTP), which may serve as a model of learning and memory. While LTP can be demonstrated at many synapses, the best-studied occurs in the hippocampus between terminals of the Schaffer collaterals and CA1 pyramidal cells. LTP requires the involvement of both presynaptic and postsynaptic elements. Enhancement of transmitter release by Schaffer collateral terminals is thought to require release by pyramidal cells of a "retrograde messenger." NO had been advanced as a candidate for the retrograde messenger role, because NO inhibitors interfere with the establishment of LTP, as does hemoglobin, which binds NO (62–65). However, immunohistochemical studies fail to reveal any nNOS in pyramidal cells (44). Moreover, LTP can readily be demonstrated in hippocampal slices of mice in which nNOS has been knocked out by homologous recombination (66). Even more perplexing is the fact that NOS inhibitors continue to block LTP in the nNOS knock-outs. A solution to this riddle may come from immunohistochemical studies showing that endothelium of blood vessels is not the only site of eNOS occurrence. Instead, we observe high eNOS densities in pyramidal cells of the hippocampus (67). In nNOS knock-out, eNOS localizations in the pyramidal cells and other neurons and in blood vessel are normal (66). While definitive evidence awaits studies in eNOS knock-outs, NO derived from eNOS in pyramidal cells may well be important to LTP in the hippocampus.

The fact that NO is formed in neurons by two discrete NOS isoforms derived from different genes may help to clarify the functions of NO in the brain. Differences in localization of the two enzymes may be illuminating. Both forms of NOS occur in the olfactory bulb, caudate-putamen, supraoptic nucleus, and

cerebellum. However, only eNOS is concentrated in the hippocampus, both in pyramidal cells of the CA1 region and in granule cells of the dentate gyrus. By contrast, nNOS occurs only in small GABA-containing interneurons and pyramidal cells of the subiculum. In the olfactory bulb the two enzymes are differentially localized: eNOS occurs in neurons of the internal granule cell layer and neuropil of the glomerular and external plexiform layers, while nNOS is found in individual neurons of the glomerular layer. nNOS is less prominent than eNOS in neuropil in the external plexiform layer, though in the internal granule cell layer its localizations are similar to those of eNOS. Neither eNOS nor nNOS occurs in mitral cells. In the caudate-putamen, moderate amounts of eNOS occur in small-to-medium spiny neurons, whereas nNOS is found in medium-to-large aspiny neurons. Cerebellar eNOS is less prominent in granule cells than is nNOS, and neither occurs in the Purkinje cells. nNOS (but not eNOS) is evident in the superior and inferior colliculi, the bed nucleus of the stria terminalis, and the hypothalamus.

nNOS neurons stain prominently for NADPH diaphorase (NDP), whereas in most studies NDP is never detected in cells (such as pyramidal cells of the hippocampus) that contain high levels of eNOS. Higher concentrations of glutaraldehyde reveal eNOS as well as nNOS staining (67). Glutaraldehyde fixation differs from formaldehyde fixation, which is conventionally used for NDP, in that it is irreversible and produces many more intramolecular cross-links than formaldehyde. Since eNOS is myristoylated and largely membrane associated (68, 69), glutaraldehyde-containing fixatives should better preserve the active form of eNOS by crosslinking it to other components of the plasma membrane.

NO may play a role in development of the nervous system. Our immunohistochemical studies reveal transient expression of nNOS in discrete areas of the developing rat nervous system (70). In the brain, transient NOS expression occurs selectively in the cerebral cortical plate, especially at embryonic days E15–19 in which the majority of the cells in the plate stain and their processes pass to the thalamus. The innervation gradually decreases after birth and is absent in adults. Similarly, in the olfactory epithelium nNOS occurs prominently in neurons from E15 to early postnatal life. In embryonic sensory ganglia virtually all neuronal cells are nNOS positive, whereas in adult life only 1% express NOS.

The function of NO in the developing nervous system is unclear. NO may be trophic for developing neurons. Alternatively, it may help to elicit the programmed cell death in which up to 50% of mammalian neurons die during development. The limited amount of evidence now available suggests that NO may be involved in cell death. For instance, NO-generating agents cause a collapse of neuronal growth cones in regenerating dorsal root ganglion cells (71). Although originally nNOS was not thought to be inducible, various forms

of nerve lesion increase expression of nNOS. Following peripheral axotomy, the percentage of NOS-positive cells in sensory ganglia increases markedly, though not to levels evident in the embryonic ganglia (35). In the brain, lesions of the medial forebrain bundle and mammillothalamic tract elicit nNOS staining in cell bodies of the lesioned fibers; this staining persists up to 5 months, suggesting a neuroprotective role of nNOS action (72). Kalb & Agostini (73) detected transient expression of NOS in ventral horn neurons that contact motor neurons in the first postnatal week of life; nitroarginine treatment blocked the development of sciatic motor neurons. Studies in the spinal cord suggest that NO formed by nNOS induced following lesions is responsible for cell death. Thus, following ventral root avulsion or spinal cord transsection, motor neurons display pronounced nNOS staining (34). The cells that display the augmented staining ultimately die (74). Moreover, treatment of these animals with the NOS inhibitor nitroarginine prior to ventral root avulsion protects the cells from death (74).

A Role for NO in Neurotoxicity

Abundant evidence implicates NO as a mediator of neurotoxicity, especially in response to glutamate. Following vascular stroke, large amounts of glutamate are released that elicit neurotoxicity via NMDA receptors, a finding supported by the protective effects of NMDA antagonists (75, 76). NMDA receptor stimulation augments NOS activity, but NOS neurons are resistant to NMDA neurotoxicity following NMDA stimulation of cortical cultures, both in stroke and in Huntington's and Alzheimer's diseases (77-81). NO released from NOS neurons in response to NMDA stimulation appears to kill adjacent neurons: NOS antagonists prevent neurotoxicity in cortical culture, as does removal of arginine from the medium and treatment with flavoprotein and calmodulin inhibitors (82, 83). Low doses of nitroarginine block neural damage following middle cerebral artery occlusion in mice, rats, and cats (84-88). High doses of NOS inhibitors may exacerbate this damage, presumably through decreased cerebral blood flow (89, 90). NO neurotoxicity may result from the formation of peroxynitrite by the combination of NO with superoxide. Such peroxynitrite should lead to the formation of nitrotyrosine in proteins. Using an antibody to nitrotyrosine, J Beckman (personal communication) has demonstrated dramatic staining co-localized with infarcted tissue following middle cerebral artery ligation in rats. Particularly persuasive evidence for a role of NO in stroke damage comes from the observation (90a) that stroke damage is reduced by about 40% in nNOS knock-out mice.

NO may also mediate neurotoxicity in AIDS dementia, a puzzling condition in which the HIV virus is detected at negligible levels in neurons. It is thought that the gp120 coat protein mediates toxicity, as picomolar concentrations kill neurons in primary cerebral cortical cultures in a fashion absolutely dependent


upon the action of glutamate through NMDA receptors (91). We observed that this toxicity requires NO because it is absent in arginine-free medium and blocked by NOS inhibitors (92). Because gp120 toxicity requires the presence of macrophages and/or astrocytes whose released cytokines and arachidonic metabolites can potentiate NMDA receptor currents (93), we suspect that these other mediators synergize with glutamate to trigger NO formation.

Further support for a role of NO in neurotoxicity comes from studies using protective agents that indirectly block NO formation. Gangliosides are neuroprotective in both animals and humans with spinal cord damage (94–97). They bind calmodulin (98, 99), inhibit NOS activity, and prevent NMDA toxicity in neuronal cultures in proportion to their affinity for calmodulin and NOS inhibition (100). Immunosuppressants, such as FK506 and cyclosporin A, inhibit the calcium-activated phosphatase calcineurin by binding to the immunophilins cyclophilin and FK-binding protein (FKBP); the drug-immunophilin complex then binds to calcineurin. NOS is a calcineurin substrate, as phosphorylated NOS levels are increased by FK506 and cyclosporin A (101). Because phosphorylated NOS is catalytically inactive, treatment with immunosuppressants is equivalent to treatment with NOS inhibitors. Both FK506 and cyclosporin A block NMDA neurotoxicity in low concentrations (101). In liver transplant patients, the incidence of global cerebral ischemia is much lower in patients receiving FK506, which penetrates into the brain, than in patients receiving cyclosporin, which does not (102). The neuroprotective effects of FK506 were demonstrated recently in focal cerebral ischemia (102a). In rats with middle cerebral artery occlusion, cortical damage was significantly reduced by FK506 treatment (102a).

How does NO exert its neurotoxic actions? In mediating physiologic synaptic transmission, the best-established target of NO is GC. Because GC inhibitors do not block neurotoxicity and because 8-bromo-cyclic GMP, which penetrates readily into cells, is not neurotoxic, other targets must exist for neurotoxicity (103).

Many other NO target molecules have been discovered (Table 1). NO combines with nonheme iron in numerous enzymes such as NADH-ubiquinone oxidoreductase, NADH-succinate oxidoreductase, and *cis*-aconitase, all iron-sulfur enzymes (37, 104). NO binds to the iron in ferritin, the iron storage protein, liberating iron that can cause lipid peroxidation (105). NO also binds to the iron of ribonucleotide reductase to inhibit DNA synthesis (106, 107). Recent evidence indicates a role of NO in regulating iron metabolism. Iron metabolism is influenced posttranscriptionally by mRNA-protein interactions between iron regulatory factors (IRF) and iron-responsive elements (IRE) in the untranslated regions of mRNA for the erythroid form of 5-aminolevulinate synthase, the transferrin receptor, and ferritin (108, 109). IRF is identical to cytosolic aconitase, which is converted to IRF when it loses an iron and is

transformed from a protein with aconitase catalytic activity to a protein that binds IRE. By binding to iron, NO stimulates the IRE-binding function of IRF while diminishing its cytosolic aconitase activity (110, 111). Stimulation of macrophages with LPS or interferon-gamma to produce NO activates IRF function (110, 111). NMDA acting through NO similarly stimulates IRF (112) (Figure 2). IRF occurs in discrete neuronal populations, suggesting a selective synaptic function (112). Though IRF and NOS do not co-localize fully, structures enriched in IRF, such as granule cells of the cerebellum and the olfactory bulb and the dentate gyrus of the hippocampus, also have high densities of NOS. IRF may be sensitive to oxidants other than NO and may couple cellular responses to oxidative states. Influences of NO on IRF might regulate the role of fatty acids in cellular energy dynamics. By diminishing cytosolic aconitase activity, NMDA synaptic transmission would make more citrate available for cytosolic citrate lyase, which converts citrate to acetylCoA and oxalacetate. Cytosolic acetylCoA is prominently incorporated into fatty acids that provide an energy reservoir for neuronal function during states of oxidative stress.

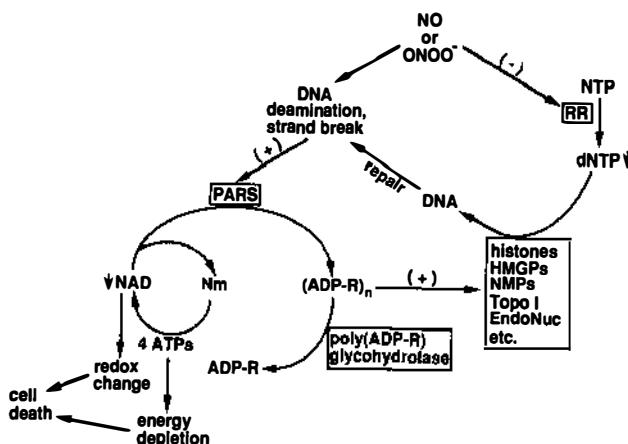
Figure 2 NO activation of IRF in regulation of cellular iron homeostasis. Glutamate (Glu) binds to *N*-methyl-D-aspartate receptors (NMDAR) and causes calcium influx. Elevated intracellular calcium activates calmodulin (CaM), which in turn activates NOS to produce NO from arginine (Arg). NO removes iron (Fe) from cytosolic aconitase, converting it to iron-responsive factor (IRF). IRF regulates iron metabolism through binding to iron-responsive elements (IRE) in a number of mRNAs that encode proteins related to iron transport and storage. If the IRE is located at the 3' end of mRNA [e.g. transferrin receptor (TfR) mRNA], IRF binding stabilizes the mRNA and increases translation. If IRE is located at the 5' end of mRNA (e.g. transferrin mRNA), IRF binding prevents the translation.

Table 1 NO targets^a

Interaction sites or modification types	Target molecules	Functional consequences	References
Heme	Soluble guanylyl cyclase	Increased cGMP	7
	Cyclooxygenase I & II	Increased prostoglandin E ₂	130–133
	Cytochrome P450	Impaired detoxification	134, 135
Nonheme-iron	Cytosolic aconitase	Inhibition of glycolysis, activation of IRF to regulate iron metabolism	110–112
	Mitochondrial aconitase	Inhibition of glycolysis	37, 104
	Complex I and II	Inhibition of respiratory chain	37, 104
	Ferritin/transferrin	Iron loss and lipid peroxidation	105
	Ribonucleotide reductase	Inhibition of DNA synthesis	106, 107
	NMDA receptor	Block of Ca ²⁺ influx	136
	Protein kinase C	Inhibition of phosphorylation	137
	GAPDH	Inhibition of glycolysis, enhanced ADP-ribosylation	115–117
	Ca ²⁺ -dependent-K ⁺ -channel	Activation, vasorelaxation	138–140
Nitrosylation	G proteins	Activation, causing NF- κ B translocation	141
	Tyrosine phosphatase	Activation of p56 ^{lck}	142
	Albumin	NO carrier activity	143
	t-PA	Vasodilation and antiplatelet activities	113
	Glutathione	Activation of the hexose monophosphate shunt	144
	Zn, Cu-superoxide dismutase	Tyrosine nitration	145
	α -Tocopherol in LDL	Oxidation	146
(ONOO ⁻ formation)	DNA strand break	PARS activation	124, 147
	GAPDH	Inhibition of glycolysis	122
	DNA	Mutations and strand breaks, PARS activation	124, 148
Deamination			

^a Abbreviations: IRF, iron-responsive factor; complex I & II, NADH-succinate oxidoreductase and NADH-ubiquinone oxidoreductase; NMDA, *N*-methyl-D-aspartate; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; NF- κ B, nuclear factor κ B, a transcription factor; t-PA, tissue-type plasminogen activator; ONOO⁻, peroxynitrite; LDL, low-density lipoproteins; PARS, poly(ADP-ribose) synthetase.

NO can stimulate the S-nitrosylation of numerous proteins (113, 114) as well as the auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase (115–117). The covalent modification of GAPDH by NAD was initially characterized as a mono-ADP-ribosylation. Kots et al (115) and Dimmeler et al (118) determined that radioactivity could be incorporated into GAPDH from [adenylate-¹⁴C]NAD but not from [nicotinamide-¹⁴C]NAD, suggesting that


ADP-ribose, but not the nicotinamide moiety, was transformed to GAPDH. However, McDonald & Moss (119), under different conditions, observed the full NAD molecule covalently linked to GAPDH through an NO-dependent thiol intermediate. The exact chemical nature of the modification may be more complicated than what was originally conceived. Recent isoelectric focusing gel analysis resolves at least three species of NO-enhanced NAD-modification of GAPDH. The major labeling spots comigrate with ADP-ribosylated GAPDH (120). The exact species of NAD-modified GAPDH in the intact cells is not yet established.

NO-enhanced ADP-ribosylation of GAPDH inhibits its enzymatic activity (116). Although the stoichiometry of ADP-ribosylation of GAPDH is generally less than 10% (115, 117), inhibition of GAPDH by NO is usually more than 50% (121). Apparently, the direct NO modification of cysteine 149 at the catalytic center of GAPDH accounts for the inhibition (121). This NO-modification of GAPDH can also be mediated through peroxynitrite (122).

There is accumulating evidence that endogenous NO production enhances ADP-ribosylation of GAPDH *in vivo*. Dimmeler et al (123) showed a correlation of interleukin-1 β -induced NO production with the increasing of GAPDH ADP-ribosylation in RINm5F cells. In LPS-treated mice, GAPDH activity is reduced in heart and spleen. Thus, NO-induced GAPDH inhibition may contribute to NO cytotoxicity by impairing energy production (123).

The best-established candidate for mediation of neurotoxicity by NO is poly (ADP-ribose) synthetase (PARS). Cell death appears to follow NO-mediated DNA damage, which stimulates PARS activity (124). PARS is a nuclear enzyme that utilizes NAD as a substrate to attach 50–100 ADP-ribose units to nuclear proteins such as histones and PARS itself (125). NO stimulates poly (ADP-ribosylation) of PARS in brain tissue (124). Moreover, NMDA neurotoxicity in cortical cultures is blocked by PARS inhibitors in proportion to their potency in inhibiting PARS (124). Thus NO neurotoxicity may commence with NO damage to DNA, which activates PARS, depleting cells of NAD and ATP, because four molecules of ATP are consumed in NAD regeneration. While massive stimulation of PARS kills cells by energy depletion, PARS activation by lesser degrees of DNA damage presumably facilitates DNA repair.

PARS activation by damaged DNA enhances DNA repair by relaxing chromosomal structure through poly(ADP-ribosyl)ation of histones, high-mobility group proteins, and nuclear matrix proteins; and by coordinating, through poly(ADP-ribosyl)ating, key enzymes involved in DNA metabolism such as topoisomerase I and Ca^{2+}, Mg^{2+} -dependent endonuclease. Ribonucleotide reductase, a rate-limiting enzyme for DNA synthesis, is inhibited by NO (106, 107). Thus, DNA repair is delayed owing to a short supply of deoxyribonucleotides so that PARS activation is prolonged. Meanwhile, the constitutive

Figure 3 NO-mediated neurotoxicity. DNA damaged by NO or peroxynitrite (ONOO⁻) activates poly(ADP-ribose) synthetase (PARS), which coordinates DNA repair through poly(ADP-ribosyl)ating itself and other proteins involved in DNA metabolism, such as histones, high-mobility group proteins (HMGP_s), nuclear matrix proteins (NMP_s), topoisomerase I (Topo I), and Mg²⁺, Ca²⁺-dependent endonuclease (EndoNuc). NO inhibition of ribonucleotide reductase (RR) diminishes the deoxyribonucleotide triphosphate (dNTP) supply for DNA synthesis. The delayed DNA repair prolongs PARS activation. At the same time, constitutive poly(ADP-ribose) glycohydrolase rapidly degrades poly(ADP-ribose). Four ATPs are needed to resynthesize nicotinamide adenine diphosphate (NAD) from nicotinamide (Nm). PARS and poly(ADP-ribose) glycohydrolase form a futile cycle that decreases NAD, depletes cellular energy, and ultimately leads to cell death.

poly(ADP-ribose) glycohydrolase is rapidly degrading poly(ADP-ribose). Together, PARS and poly(ADP-ribose) glycohydrolase form a futile cycle to deplete NAD. Because it takes four ATPs to resynthesize one NAD from nicotinamide, a sustained consumption of NAD will deplete ATP, and the resultant drop of cellular energy level may be lethal (Figure 3). PARS inhibitors also protect against NMDA toxicity in mouse fetal cortical culture (126) and against NO toxicity in hippocampal slices (127).

NO activation of PARS is not restricted to neurotoxicity. Inhibition of insulin secretion associated with damage to islets of Langerhans is induced by interleukin-1 β and tumor necrosis factor- α derived from activated macrophages, which may contribute to type I diabetes (128). PARS inhibitors can rescue NO-mediated damage of islet cells (129).

ACKNOWLEDGMENTS

Supported by USPHS grants MH-18501, DA-00266, Research Scientist Award DA-00074 (SHS), NIDA contract 271-90-4708, and a grant of the Asahi Chemical Corporation (JZ).

The authors own stock in (SHS) and/or are entitled to royalty (JZ, SHS) from Guilford Pharmaceuticals, Inc., which is developing technology related to the research described in this paper. The stock has been placed in escrow and cannot be sold until a date determined by the Johns Hopkins University.

Any *Annual Review* chapter, as well as any article cited in an *Annual Review* chapter, may be purchased from the Annual Reviews Preprints and Reprints service.
1-800-347-8007; 415-259-5017; email: aprp@class.org

Literature Cited

- Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH. 1993. Carbon monoxide, a putative neural messenger. *Science* 259:381-84
- Ewing JF, Maines MD. 1992. In situ hybridization and immunohistochemical localization of heme oxygenase-2 mRNA and protein in normal rat brain: differential distribution of isozyme I and 2. *Mol. Cell Neurosci.* 3:559-70
- Green LC, Ruiz-de-Luzuriaga K, Wagner DA, Rand W, Istfan N, et al. 1981. Nitrate biosynthesis in man. *Proc. Natl. Acad. Sci. USA* 78:7764-68
- Green LC, Tannenbaum SR, Goldman P. 1981. Nitrate synthesis in the germ-free and conventional rat. *Science* 212: 56-58
- Hibbs JB Jr, Taintor RR, Vavrin Z. 1987. Macrophage cytotoxicity: role for L-arginine deaminase and imino nitrogen oxidation to nitrite. *Science* 235:473-76
- Stuehr DJ, Gross SS, Sukuma I, Levi R, Nathan CF. 1989. Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. *J. Exp. Med.* 169:1011-20
- Arnold WP, Mittal CK, Katsuki S, Murad F. 1977. Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations. *Proc. Natl. Acad. Sci. USA* 74:3203-7
- Ignarro LJ, Lipton H, Edwards JC, Baricos WH, Hyman AL, et al. 1981. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. *J. Pharmacol. Exp. Ther.* 218:739-49
- Furchtgott RF, Zawadzki JV. 1980. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. *Nature* 288:373-76
- Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. 1987. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. *Proc. Natl. Acad. Sci. USA* 84: 9265-69
- Palmer RMJ, Ferrige AG, Moncada S. 1987. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. *Nature* 327:524-26
- Garthwaite J, Charles SL, Chess-Wiliams R. 1988. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. *Nature* 336:385-88
- Bredt DS, Snyder SH. 1989. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. *Proc. Natl. Acad. Sci. USA* 86:9030-33
- Garthwaite J, Garthwaite G, Palmer RMJ, Moncada S. 1989. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. *Eur. J. Pharmac.* 172:413-16
- Bredt DS, Snyder SH. 1994. Nitric oxide: a physiologic messenger molecule. *Annu. Rev. Biochem.* 63:175-95
- Bredt DS, Snyder SH. 1990. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. *Proc. Natl. Acad. Sci. USA* 87:682-85
- Bredt DS, Hwang PH, Glatt C, Lowenstein C, Reed RR, et al. 1991. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. *Nature* 351:714-18
- Lowenstein CJ, Glatt CS, Bredt DS, Snyder SH. 1992. Cloned and expressed macrophage nitric oxide synthase contrasts with brain enzyme. *Proc. Natl. Acad. Sci. USA* 89:6711-15
- Xie Q-W, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, et al. 1992. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. *Science* 256:225-28
- Lyons CR, Orloff GJ, Cunningham JM.

1992. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. *J. Biol. Chem.* 267:6370-74

21. Lamas S, Marsden PA, Li GK, Tempst P, Michel T. 1992. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. *Proc. Natl. Acad. Sci. USA* 89:6348-52

22. Sessa WC, Harrison JK, Barber CM, Zeng D, Durieux ME, et al. 1992. Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. *J. Biol. Chem.* 267: 15274-76

23. Janssens SP, Shimouchi A, Quertermous T, Bloch DB, Bloch KD. 1992. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. *J. Biol. Chem.* 267:14519-22

24. Geller DA, Lowenstein CJ, Shapiro RA, Nussler AK, Di Silvio M, et al. 1993. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. *Proc. Natl. Acad. Sci. USA* 90:3491-95

25. Charles IG, Palmer MJ, Hickery MS, Bayliss MT, Chubb AP, et al. 1993. Cloning, characterization and expression of a cDNA encoding an inducible NO synthase from the human chondrocyte. *Proc. Natl. Acad. Sci. USA* 90:11419-23

26. Bredt DS, Ferris CD, Snyder SH. 1992. Nitric oxide synthase regulatory sites: phosphorylation by cyclic AMP dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. *J. Biol. Chem.* 267:10976-81

27. Kwon NS, Nathan CF, Stuehr DJ. 1989. Reduced biotin as a cofactor in the generation of nitrogen oxides by murine macrophages. *J. Biol. Chem.* 264: 20496-501

28. Tayeh MA, Marletta MA. 1989. Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. *J. Biol. Chem.* 264:19654-58

29. Mayer B, John M, Heinzel B, Werner ER, Wachter H, et al. 1991. Brain nitric oxide synthase is a biotin and flavin-containing multi-functional oxido-reductase. *FEBS Lett.* 288:187-91

30. McMillan K, Bredt DS, Hirsch DJ, Snyder SH, Clark JE, et al. 1992. Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme which bind carbon monoxide. *Proc. Natl. Acad. Sci. USA* 89:11141-45

31. Klatt P, Schmidt K, Mayer B. 1992. Brain nitric oxide synthase is a haemoprotein. *Biochem. J.* 288:15-17

32. Stuehr DJ, Ikeda-Saito M. 1992. Spectral characterization of brain and macrophage nitric oxide synthases. Cytochrome P-450-like heme proteins that contain a flavin semiquinone radical. *J. Biol. Chem.* 267:20547-50

33. White LA, Marletta MA. 1992. Nitric oxide synthase is a cytochrome-P-450 like hemoprotein. *Biochemistry* 31: 6627-31

34. Wu W, Liuzzi FJ, Schinco FB, Depto A, Li Y, et al. 1994. Neuronal nitric oxide synthase is induced in spinal neurons by traumatic injury. *Neuroscience* 61:719-26

35. Verge VMK, Xu Z, Xu X-J, Wiesenfeld-Hallin Z, Hokfelt T. 1992. Marked increase in nitric oxide synthase mRNA in rat dorsal root ganglia after peripheral axotomy: *in situ* hybridization and functional studies. *Proc. Natl. Acad. Sci. USA* 89:11617-21

36. Cho HJ, Xie Q-W, Calaycay J, Mumford RA, Swiderek KM, et al. 1992. Calmodulin as a tightly bound subunit of calcium-, calmodulin-independent nitric oxide synthase. *J. Exp. Med.* 176:599-604

37. Nathan C. 1992. Nitric oxide as a secretory product of mammalian cells. *FASEB J.* 6:3051-64

38. Brüne B, Lepetina EG. 1991. Phosphorylation of nitric oxide synthase by protein kinase A. *Biochem. Biophys. Res. Commun.* 181:921-26

39. Nakane M, Mitchell J, Forstermann U, Murad F. 1991. Phosphorylation by calcium calmodulin-dependent protein kinase II and protein kinase C modulates the activity of nitric oxide synthase. *Biochem. Biophys. Res. Commun.* 180: 1396-402

40. Bredt DS, Ferris CD, Snyder SH. 1992. Nitric oxide synthase regulatory sites. *J. Biol. Chem.* 267:10976-81

41. Dinerman JL, Snyder SH. 1994. Multiple phosphorylations of neuronal nitric oxide synthase inhibit catalytic activity. *Neuropharmacology* In press

42. Lowenstein CJ, Alley EW, Raval P, Snowman AM, Snyder SH, et al. 1993. Macrophage nitric oxide synthase gene: Two upstream regions mediate induction by interferon-gamma and lipopolysaccharide. *Proc. Natl. Acad. Sci. USA* 90: 9730-34

43. Xie QW, Whisnant R, Nathan C. 1993. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon

gamma and bacterial lipopolysaccharide. *J. Exp. Med.* 177:1779-84

44. Bredt DS, Glatt CE, Hwang PM, Fotuhi M, Dawson TM, et al. 1991. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. *Neuron* 7:615-24

45. Hokfelt T, Johansson O, Ljungdahl A, Lundberg JM, Schultzberg M. 1980. Peptidergic neurons. *Nature* 284:515-21

46. Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH. 1991. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. *Proc. Natl. Acad. Sci. USA* 88:7797-801

47. Hirsch DB, Steiner JP, Dawson TM, Mammen A, Hayek E, et al. 1993. Neurotransmitter release regulated by nitric oxide in PC-12 cells and brain synaptosomes. *Curr. Biol.* 3:749-54

48. Sandberg K, Berry CJ, Eugster E, Rogers TB. 1989. A role for cGMP during tetanus toxin blockade of acetylcholine release in the rat pheochromocytoma (PC12) cell lines. *J. Neurosci.* 9:3946-54

49. Sandberg K, Berry CJ, Rogers TB. 1989. Studies on the intoxication pathway of tetanus toxin in the rat pheochromocytoma (PC12) cell line. *J. Biol. Chem.* 264:5679-86

50. Bredt DS, Hwang PM, Snyder SH. 1990. Localization of nitric oxide synthase indicating a neural role for nitric oxide. *Nature* 347:768-70

51. Boeckxstaens GE, Pelckmans PA, Bult H, DeMan JG, Herman AG. 1991. Evidence for nitric oxide as mediator of non-adrenergic non-cholinergic relaxations induced by ATP and GABA in the canine gut. *Br. J. Pharmacol.* 102: 434-38

52. Bult H, Boeckxstaens GE, Pelckmans PA, Jordaeans FH, Van Maercke YM, et al. 1990. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. *Nature* 345:346-47

53. Desai KM, Sessa WC, Vane JR. 1991. Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. *Nature* 351:477-79

54. Tottrup A, Svane D, Forman A. 1991. Nitric oxide mediating NANC inhibition in opossum lower esophageal sphincter. *Am. J. Physiol.* 260:G385-89

55. Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC. 1993. Targeted disruption of the neuronal nitric oxide synthase gene. *Cell* 75:1273-86

56. Vanderwinden J-M, Mailleux P, Schiffmann SN, Vanderhaeghen J-J, DeLaet MH. 1992. Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. *New Engl. J. Med.* 327:8:511-15

57. Yamamoto R, Bredt DS, Snyder SH, Stone RA. 1993. The localization of nitric oxide synthase in the rat eye and related cranial ganglia. *Neuroscience* 54:189-200

58. Nozaki K, Moskowitz MA, Maynard KL, Koketsu N, Dawson TM, et al. 1993. Possible origins and distribution of immunoreactive nitric oxide synthase-containing nerve fibers in rat and human cerebral arteries. *J. Cereb. Blood Flow Metab.* 13:70-79

59. Burnett AL, Lowenstein CJ, Bredt DS, Chang TSK, Snyder SH. 1992. Nitric oxide: a physiologic mediator of penile erection. *Science* 257:401-3

60. Rajfer J, Aronson WJ, Bush PA, Dorey FJ, Ignarro LJ. 1992. Nitric oxide as a mediator of the corpus cavernosum in response to nonadrenergic noncholinergic transmission. *New Engl. J. Med.* 326:90-94

61. Breslow MJ, Tobin JR, Bredt DS, Ferris CD, Snyder SH, et al. 1992. Role of nitric oxide in adrenal medullary vasodilation during catecholamine secretion. *Eur. J. Pharmacol.* 87:682-85

62. Schuman EM, Madison DV. 1991. The intercellular messenger nitric oxide is required for long-term potentiation. *Science* 254:1503-6

63. Bohme GA, Bon C, Stutzmann J-M, Doble A, Blanchard J-C. 1991. Possible involvement of nitric oxide in long-term potentiation. *Eur. J. Pharmacol.* 199:379-81

64. O'Dell TJ, Hawkins RD, Kandel ER, Arancio O. 1991. Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. *Proc. Natl. Acad. Sci. USA* 88: 11285-89

65. Haley JE, Wilcox GL, Chapman PF. 1992. The role of nitric oxide in hippocampal long-term potentiation. *Neuron* 8:211-16

66. O'Dell TJ, Huang PL, Dawson TM, Dinerman JL, Snyder SH, et al. 1994. Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS. *Science* 265:542-46

67. Dinerman JL, Dawson TM, Schell MJ, Snowman A, Snyder SH. 1994. Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. *Proc. Natl. Acad. Sci. USA* 91:4214-18

68. Pollock JS, Forstermann U, Mitchell JA, Warner TD, Schmidt HHHW, et al. 1991. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. *Proc. Natl. Acad. Sci. USA* 88:10480-84

69. Busconi L, Michel T. 1993. Endothelial nitric oxide synthase. N-terminal myristylation determines subcellular localization. *J. Biol. Chem.* 268:8410-13

70. Bredt DS, Snyder SH. 1994. Transient nitric oxide synthase neurons in embryonic cerebral cortical plate, sensory ganglia, and olfactory neurons. *Neuron* 13: 301-13

71. Hess DT, Patterson SI, Smith DS, Pate Skene JH. 1993. Neuronal growth cone collapse and inhibition of protein fatty acylation by nitric oxide. *Nature* 366: 562-65

72. Herdegen T, Brecht S, Mayer B, Leah J, Kummer W, et al. 1993. Long-lasting expression of JUN and KROX transcription factors and nitric oxide synthase in intrinsic neurons of the rat brain following axotomy. *J. Neurosci.* 13:4130-45

73. Kalb RG, Agostini J. 1993. Molecular evidence for nitric oxide-mediated motor neuron development. *Neuroscience* 57:1-8

74. Wu W, Li L. 1993. Inhibition of nitric oxide synthase reduces motoneuron death due to spinal root avulsion. *Neurosci. Lett.* 153:121-24

75. Choi DW. 1988. Glutamate neurotoxicity and diseases of the nervous system. *Neuron* 1:623-34

76. Meldrum B, Garthwaite J. 1990. Excitatory amino acid neurotoxicity and neurodegenerative disease. *Trends Pharmacol. Sci.* 11:379-87

77. Ferrante RJ, Kowall NW, Beal MF, Richardson EP Jr, Bird ED, et al. 1985. Selective sparing of a class of striatal neurons in Huntington's disease. *Science* 230:561-63

78. Hyman BT, Marzloff K, Wenniger JJ, Dawson TM, Bredt DS, et al. 1992. Relative sparing of nitric oxide synthase-containing neurons in the hippocampal formation in Alzheimer's disease. *Ann. Neurol.* 32:818-20

79. Koh J-Y, Choi DW. 1988. Vulnerability of cultured cortical neurons to damage by excitotoxins: differential susceptibility of neurons containing NADPH-Diaphorase. *J. Neurosci.* 8:2153-63

80. Koh J-Y, Peters S, Choi DW. 1986. Neurons containing NADPH-Diaphorase are selectively resistant to quinolinate toxicity. *Science* 234:73-76

81. Uemura Y, Kowall NW, Beal MF. 1990. Selective sparing of NADPH-Diaphorase-somatostatin-neuropeptide Y neurons in ischemic gerbil striatum. *Ann. Neurol.* 27:620-25

82. Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH. 1991. Nitric oxide mediates glutamate neurotoxicity in primary cortical culture. *Proc. Natl. Acad. Sci. USA* 88:6368-71

83. Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH. 1993. Mechanisms of nitric oxide mediated neurotoxicity in primary brain cultures. *J. Neurosci.* 13:2651-61

84. Buisson A, Plotkine M, Boulu RG. 1992. The neuroprotective effect of a nitric oxide inhibitor in a rat model of focal cerebral ischemia. *Br. J. Pharmacol.* 106:766-67

85. Nagafuji T, Matsui T, Koide T, Asano T. 1992. Blockade of nitric oxide formation by N-omega-L-arginine mitigates ischemic brain edema and subsequent cerebral infarction in rats. *Neurosci. Lett.* 147:159-62

86. Trifiletti RR. 1992. Neuroprotective effects of Ng-nitro-L-arginine in focal stroke in the 7-day-old rat. *Eur. J. Pharmacol.* 218:197-98

87. Nishikawa T, Kirsch JR, Koehler RC, Bredt DS, Snyder SH, et al. 1993. Effect of nitric oxide synthase inhibition on cerebral blood flow and injury volume during focal ischemia in cats. *Stroke* 24:1717-24

88. Nowicki JP, Duval D, Poignet H, Scatton B. 1991. Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. *Eur. J. Pharmacol.* 204:339-40

89. Dawson DA, Kusumoto K, Graham DI, McCulloch J, Macrae IM. 1992. Inhibition of nitric oxide synthase does not reduce infarct volume in a rat model of focal cerebral ischaemia. *Neurosci. Lett.* 142:151-54

90. Yamamoto S, Golovan EV, Berger SB, Reis DJ. 1992. Inhibition of nitric oxide synthase increases focal ischemic infarction in rat. *J. Cereb. Blood Flow Metab.* 12:717-26

90a. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, et al. 1994. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. *Science* 265:1883-85

91. Lipton SA. 1991. Calcium channel antagonists and human immunodeficiency virus coat protein-mediated neuronal injury. *Ann. Neurol.* 30:110-14

92. Dawson VL, Dawson TM, Uhl GR, Snyder SH. 1993. Human immunodeficiency virus type 1 coat protein neu-

rotoxicity mediated by nitric oxide in primary cortical cultures. *Proc. Natl. Acad. Sci. USA* 90:3256-59

93. Lipton SA. 1992. Requirement for macrophages in neuronal injury induced by HIV envelope protein gp120. *NeuroReport* 3:913-15
94. Manev H, Favaron M, Vicini S, Guidotti A, Costa E. 1990. Glutamate induced neuronal death in primary cultures of cerebellar granule cells: protection by synthetic derivatives of endogenous sphingolipids. *J. Pharmacol. Exp. Ther.* 252:419-27
95. Geisler FH, Dorsey FC, Coleman WP. 1992. GM-1 Ganglioside in human spinal cord injury. *J. Neurotrauma* 9:S517-30
96. Mahadik Sahebarao P. 1992. Gangliosides: new generation of neuroprotective agents. In *Emerging Strategies in Neuroprotection*, ed. PJ Malangos, H Lal, pp. 187-223. Boston: Birkhäuser
97. Skaper SD, Leon A. 1992. Monosialogangliosides, neuroprotection, and neuronal repair processes. *J. Neurotrauma* 9:S506-16
98. Higashi H, Omori A, Yamagata T. 1992. Calmodulin, a ganglioside-binding protein. Binding of gangliosides to calmodulin in the presence of calcium. *J. Biol. Chem.* 267:9831-38
99. Higashi H, Yamagata T. 1992. Mechanism for ganglioside-mediated modulation of a calmodulin-dependent enzyme. Modulation of calmodulin-dependent cyclic nucleotide phosphodiesterase activity through binding of gangliosides to calmodulin and the enzyme. *J. Biol. Chem.* 267:9839-43
100. Dawson TM, Hung K, Dawson VL, Steiner JP, Snyder SH. 1994. Neuroprotective effects of gangliosides may involve inhibition of nitric oxide synthase. *Ann. Neurol.* In press
101. Dawson TM, Steiner JP, Dawson VL, Dinerman JL, Uhl GR, et al. 1993. Immunosuppressant, FK506, enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. *Proc. Natl. Acad. Sci. USA* 90: 9808-12
102. Lopez OL, Martinez AJ, Torre-Cisneros J. 1991. Neuropathologic findings in liver transplantation: a comparative study of cyclosporine and FK506. *Transplant Proc.* 23:3181-82
- 102a. Sharkey J, Butcher SP. 1994. Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischemia. *Nature* 371:336-39
103. Lustig HS, von Brauchitsch KL, Chan J, Greenberg DA. 1992. Cyclic GMP modulators and excitotoxic injury in cerebral cortical cultures. *Brain Res.* 577: 343-46
104. Hibbs JB Jr, Taintor RR, Vavrin V, Granger DL, Drapier J-C, et al. 1990. Synthesis of nitric oxide from a guanidino nitrogen of L-arginine: a molecular mechanism that targets intracellular iron. In *Nitric Oxide from L-Arginine: A Bioregulatory System*, ed. S Moncada, EA Higgs, pp. 189-223. Amsterdam: Elsevier
105. Reif DW, Simmons RD. 1990. Nitric oxide mediates iron release from ferritin. *Arch. Biochem. Biophys.* 283:537-41
106. Lepoivre M, Chenais B, Yapo A, Lemaire G. 1990. Alterations of ribonucleotide reductase activity following induction of the nitrite-generating pathway in adenocarcinoma cells. *J. Biol. Chem.* 265:14143
107. Kwon NS, Stuehr DJ, Nathan CF. 1991. Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. *J. Exp. Med.* 174:761-68
108. Klausner RD, Rouault TA, Harford JB. 1993. Regulating the fate of mRNA: the control of cellular iron metabolism. *Cell* 72:19-28
109. Munro H. 1993. The ferritin genes: their response to iron status. *Nutrition Rev.* 51:65-73
110. Drapier JC, Hirling H, Weitzerbin J, Kaldy P, Kühn L. 1993. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. *EMBO J.* 12:3643-49
111. Weiss G, Goossen B, Doppler W, Fuchs D, Pantopoulos K, et al. 1993. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. *EMBO J.* 12:3651-57
112. Jaffrey SR, Cohen NA, Rouault TA, Klausner RD, Snyder SH. 1994. The iron-responsive element binding protein: a novel target for synaptic actions of nitric oxide. *Proc. Natl. Acad. Sci. USA* In press
113. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, et al. 1992. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. *Proc. Natl. Acad. Sci. USA* 89:444-48
114. Stamler JS, Singel DJ, Loscalzo J. 1992. Biochemistry of nitric oxide and its redox-activated forms. *Science* 258: 1898-902
115. Kots AY, Skurat AV, Sergienko EA, Bulargina TV, Severin ES. 1992. Nitroprusside stimulates the cysteine-specific mono(ADP-ribosylation) of glyceraldehyde-3-phosphate dehydroge-

nase from human erythrocytes. *FEBS Lett.* 300:9-12

116. Dimmeler S, Lottspeich F, Brüne B. 1992. Nitric oxide causes ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. *J. Biol. Chem.* 267:16771-74

117. Zhang J, Snyder SH. 1992. Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. *Proc. Natl. Acad. Sci. USA* 89: 9382-85

118. Dimmeler S, Brüne B. 1992. Characterization of a nitric-oxide-catalysed ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. *Eur. J. Biochem.* 210:305-10

119. McDonald LJ, Moss J. 1993. Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase. *Proc. Natl. Acad. Sci. USA* 90: 6238-41

120. DeMattis MA, DiGirolamo M, Colanzi A, Pallas M, DiTullio G, et al. 1994. Stimulation of endogenous ADP-ribosylation by brefeldin A. *Proc. Natl. Acad. Sci. USA* 91:1114-18

121. Molina y Vedia L, McDonald B, Reep B, Brüne B, DiSilvio M, et al. 1992. Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. *J. Biol. Chem.* 267:24929-32

122. Brumley LM, Beckman JS, Friedlander MJ, Marchase RB. 1993. Peroxynitrite but not nitric oxide interacts with glyceraldehyde-3-phosphate dehydrogenase. *Mol. Biol. Cell* 4:72a

123. Dimmeler S, Ankarcrona M, Nicotera P, Brüne B. 1993. Exogenous nitric oxide (NO) generation or IL-1 β -induced intracellular NO production stimulates inhibitory auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase in RINm5F cells. *J. Immunol.* 150: 2964-71

124. Zhang J, Dawson VL, Dawson TM, Snyder SH. 1994. Nitric oxide activation of poly (ADP-ribose) synthetase in neurotoxicity. *Science* 263:687-89

125. de Murcia G, Menissier-de Murcia J, Schreiber V. 1991. Poly(ADP-ribose) polymerase: molecular biological aspects. *BioEssays* 13:455-62

126. Miller MS, Zobre C, Lewis M. 1993. In vitro neuroprotective activity of inhibitors of poly-ADP-ribose polymerase. *Soc. Neurosci. Abstr.* 19:1656

127. Wallis RA, Panizzon KL, Henry D, Wasterlain CG. 1993. Neuroprotection against nitric oxide injury with inhibitors of ADP-ribosylation. *Neuropharmacol. Neurotoxicol.* 5:245-48

128. Kroncke K-D, Kolb-Bachofen V, Berschick B, Burkart V, Kolb H. 1991. Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation. *Biochem. Biophys. Res. Commun.* 175:752-58

129. Kallman B, Burkart V, Kroncke K-D, Kolb-Bachofen V, Kolb H. 1992. Toxicity of chemically generated nitric oxide towards pancreatic islet cells can be prevented by nicotinamide. *Life Sci.* 51: 671-78

130. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, et al. 1993. Nitric oxide activates cyclooxygenase enzymes. *Proc. Natl. Acad. Sci. USA* 90: 7240-44

131. Rettori M, Gimeno M, Lyson K, McCann SM. 1992. Nitric oxide mediates norepinephrine-induced prostaglandin E2 release from the hypothalamus. *Proc. Natl. Acad. Sci. USA* 89:11543-46

132. Karanth S, Lyson K, McCann SM. 1993. Role of nitric oxide in interleukin 2-induced corticotropin-releasing factor release from incubated hypothalam. *Proc. Natl. Acad. Sci. USA* 90:3383-87

133. Corbett JA, Kwon G, Turk J, McDaniel ML. 1993. IL- β induces the coexpression of both nitric oxide synthase and cyclooxygenase by islets of Langerhans: activation of cyclooxygenase by nitric oxide. *Biochemistry* 32:13767-70

134. Khatsenko OG, Gross SS, Rifkind AB, Vane JR. 1993. Nitric oxide is a mediator of the decrease in cytochrome P450-dependent metabolism caused by immunostimulants. *Proc. Natl. Acad. Sci. USA* 90:11147-51

135. Stadler J, Trockfeld J, Schmalix WA, Brill T, Siewert R, et al. 1994. Inhibition of cytochromes P4501A by nitric oxide. *Proc. Natl. Acad. Sci. USA* 91:3559-63

136. Lei SZ, Pan ZH, Aggarwal SK, Chen HSV, Hartman J, et al. 1992. Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. *Neuron* 8:1087-99

137. Gopalakrishna R, Chen ZH, Gundimeda U. 1993. Nitric oxide and nitric oxide-generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. *J. Biol. Chem.* 268:27180-85

138. Tang YG, Zheng YF. 1993. Endothelium-derived relaxing factor activates calcium-activated potassium channels of resistance vessel smooth muscle cells. *Sci. China B* 36:439-50

139. Khan SA, Mathews WR, Meisheri KD. 1993. Role of calcium-activated K⁺

channels in vasodilation induced by nitruglycerine, acetylcholine and nitric oxide. *J. Pharmacol. Exp. Ther.* 267: 1327-35

140. Bilotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. 1994. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. *Nature* 368:850-53

141. Lander HM, Sehajpal P, Levine DM, Novogrodsky A. 1993. Activation of human peripheral blood mononuclear cells by nitric oxide-generating compounds. *J. Immunol.* 150:1509-16

142. Lander HM, Sehajpal PK, Novogrodsky A. 1993. Nitric oxide signaling: a possible role for G proteins. *J. Immunol.* 151:7182-87

143. Stamler JS, Jaraki O, Osborne J, Simon DL, Keaney J, et al. 1992. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. *Proc. Natl. Acad. Sci. USA* 89:7674-77

144. Clancy RM, Levartovsky D, Leszczynska-Piziak J, Yegudin J, Abramson SB. 1994. Nitric oxide reacts with in-tracellular glutathione and activates the hexose monophosphate shunt in human neutrophils: evidence for S-nitrosoglutathione as a bioactive intermediary. *Proc. Natl. Acad. Sci. USA* 91:3680-84

145. Beckman JS, Carson M, Smith CD, Koppenol WH. 1993. ALS, SOD and peroxynitrite. *Nature* 364:584

146. Hogg N, Darby-Usman VM, Wilson MT, Moncada S. 1993. The oxidation of alpha-tocopherol in human low-density lipoprotein by the simultaneous generation of superoxide and nitric oxide. *FEBS Lett.* 326:199-203

147. King PA, Anderson VE, Edwards JO, Gustafson G, Plumb RC, et al. 1992. A stable solid that generates hydroxyl radical upon dissolution in aqueous solutions: reaction with proteins and nucleic acid. *J. Am. Chem. Soc.* 114: 5430-32

148. Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, et al. 1992. DNA damage and mutation in human cells exposed to nitric oxide in vitro. *Proc. Natl. Acad. Sci. USA* 89:3030-34