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ABSTRACT

Nitric oxide (NO) has only recently been appreciated as a normal biologic
substance with a role in signal transduction. It was first identified as endothe-
lial-derived relaxing factor in blood vessels and as the mediator of the tumor-
icidal and bactericidal actions of macrophages. NO’s role as a neural messenger
may be even more prominent. Biosynthesis of NO involves oxidation of the
guanidine group of arginine with stoichiometric formation of citrulline. NO
synthase is one of the most extensively regulated enzymes in biology. In the
periphery, NO is a likely transmitter of nonadrenergic, noncholinergic neurons.
In the brain, NO neurons mediate action of glutamate acting at N-methyl-D-
aspartate (NMDA) receptors. Excess release of NO appears to account for a
major portion of neural damage following vascular stroke.

INTRODUCTION

The discovery of nitric oxide (NO) as a neurotransmitter and recent evidence
that carbon monoxide (CO) may also be a transmitter (1, 2) have radically
altered thinking about synaptic transmission. Since NO is a labile free radical,
it is not stored in synaptic vesicles as are other transmitters. Instead, it must
be synthesized on demand from its precursor L-arginine by NO synthase
(NOS), which must be capable of rapid modulation. Not surprisingly, NOS is
one of the most regulated enzymes in biology. NO cannot be released by
exocytosis but instead simply diffuses from nerve terminals. Rather than bind-
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ing to protein receptors on adjacent cells, it diffuses into them. NO directly
interacts with targets that would normally be regarded as second messengers.
In contrast to the reversible binding to plasma membrane receptors character-
istic of most neurotransmitters, NO forms covalent linkages to intracellular
proteins. There may be a substantial number of targets for NO; best charac-
terized is guanylyl cyclase (GC). Inactivation of NO presumably involves
diffusion away from target sites. Covalent linkage to small molecules such as
superoxide and large proteins may also inactivate synaptically released NO.

One fascinating feature of NO, shared with some neurotransmitters such as
peptides, is its involvement in multiple biological processes unrelated to syn-
aptic transmission. NO was first discovered as a substance formed by macro-
phages, responsible for their ability to kill tumor cells and fungi. Investigations
into nitrosamines as carcinogens led to the demonstration that nitrates are
produced endogenously. Because mice with a genetic absence of macrophages
fail to produce urinary nitrate, the macrophage was identified as a source. The
dependence of macrophage production of nitrite upon external arginine led to
a characterization of NOS in these cells (3-6).

A second major role of NO is as endothelium-derived relaxing factor. NO
was detected as the active metabolite of nitroglycerin and otherorganic nitrates
that dilate blood vessels by stimulating the formation of cyclic GMP through
the activation of GC (7, 8). Furchgott & Zawadzki (9) showed that blood vessel
relaxation in response to acetylcholine and other substances requires release
by the endothelial lining of a labile endothelium-derived relaxing factor, which
was subsequently identified as NO (10, 11).

The dramatic properties of NO in macrophages and blood vessels led to
suspicion that NO is formed in the brain (12). Definitive evidence for a role
of NO in synaptic transmission came from observations that the excitatory
neurotransmitter glutamate acting at N-methyl-D-aspartate (NMDA) receptors
stimulates the formation of NO (13) and that this stimulation is blocked by
NOS inhibitors such as nitroarginine and methylarginine, which also block the
NMDA stimulation of cGMP in brain slices (13, 14).

NO BIOSYNTHESIS

Though only a single enzyme is involved in NO biosynthesis, the pathway is
complex because NOS is an extraordinarily well-regulated enzyme. It oxidizes
the guanidino group of L-arginine in a process that utilizes five electrons and
gives rise to NO and equal amounts of L-citrulline (15). Numerous attempts
to purify NOS failed because enzyme activity was lost rapidly during purifi-
cation procedures. The discovery that calmodulin is required for NOS activity
in the brain enabled us to purify the enzyme to homogeneity (16). We subse-
quently cloned the cDNA for the brain enzyme neuronal NOS (nNOS) (17).
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This step permitted us (18) and others (19, 20) to clone the macrophage form
(mNOS). Still other workers cloned endothelial NOS (eNOS) (21-23), Re-
cently cloned inducible forms of NOS from hepatocytes and chondrocytes (24,
25) may mediate the formation of NO in an inducible fashion that has been
observed in many tissues.

NOS oxidizes arginine to NO. NOS uses not one electron donor but five,
Cloned NOS possesses recognition sites for NADPH, flavin mononucleotide
(FMN), and flavin adenine dinucleotide (FAD) (Figure 1). Biochemical anal-
ysis reveals both FAD and FMN bound to NOS (26). Cytochrome P450
reductase (CPR) is the only mammalian enzyme that also uses NADPH, FMN,
and FAD as electron donors. CPR donates electrons to the liver’s drug metab-
olizing cytochrome P450 enzymes. The carboxyl half of NOS displays about
60% amino acid identity to CPR. It is therefore likely that early in evolution
CPR donated electrons for NOS and that at some point CPR and NOS fused.
NOS also utilizes tetrahydrobiopterin as an electron-donating cofactor (27-29).
Recently, we (30) and others (31-33) showed that NOS contains bound heme
that reacts with CO to form a species that absorbs at 450 nm. Accordingly,
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Figure 1 Sequence homologies of NOS isoforms. All NOSs cloned thus far contain regions
homologous to cytochrome P450 reductase and coenzyme binding sites that reflect the oxidative
mechanism of NO synthesis. Consensus binding sites for flavin adenine dinucleotide (FAD), flavin
mononucleotide (FMN), the reduced form of nicotinamide adenine dinucleotide phosphate
(NADPH), calmodulin (CaM), and heme are conserved for all cloned NOSs. Phosphorylation site
(P) for cAMP-dependent kinase is conserved between the neuronal and endothelial forms. The
human hepatic NOS contains three consensus sequences forcAMP-dependent phosphorylation. The
endothelial NOS has a myristoylation site (M) at its amino-terminus.
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NOS has properties of a cytochrome P450 enzyme. The exact mechanism
whereby electron donation takes place in NOS is unclear. It is likely that
electrons proceed from NADPH to FAD, FMN, and in turn to heme to promote
interactions with molecular oxygen, with tetrahydrobiopterin playing some
role that is not yet established definitively.

NOS enzymes are constitutive or inducible. The brain form and the endo-
thelial form are regarded as constitutivein that stimuli enhancing NO formation
do not elicit new enzyme protein synthesis. Thus, in the brain, glutamate acting
at NMDA receptors triggers an influx of calcium that binds to calmodulin to
activate NOS. This explains the remarkable ability of glutamate to triple NOS
activity in brain slices in a matter of seconds and reflects a novel mode of
synaptic information transfer. In blood vessels, stimulation of acetylcholine or
bradykinin receptors on endothelial cells activates the phosphoinositide cycle
to generate calcium that stimulates NOS. The designation of neuronal NOS as
constitutive is not altogether accurate, as recent studies show that new synthesis
of nNOS occurs, especially following neuronal damage. For instance, in the
spinal cord, lesions of the ventral root lead to the appearance of newly im-
munoreactive NOS neurons in the spinal cord (34), and nNOS mRNA is
induced in dorsal root ganglia following peripheral axotomy (35).

mNOS is not stimulated by calcium despite the fact that it possesses tightly
bound calmodulin (36). Calmodulin is so intimately associated with mNOS
that it does not dissociate; thus the enzyme is apparently always calcium
activated. Macrophages normally possess no detectable NOS protein. Stimuli
such as interferon-gamma and lipopolysaccharide (LPS) lead to new NOS
protein formation over 2-4 h to produce the NO involved in inflammation.
Endotoxin stimulates inducible NOS activity in many animal tissues that do
not possess macrophages (37). An inducible NOS cloned from liver cells (24)
and chondrocytes (25) may represent a prototype for nonmacrophage-inducible
NOS. Because the NO system is simple, inducible NOS may represent a
primitive sort of immune system that repels invading microorganisms.

NOS is regulated by phosphorylation. All cloned NOS isoforms possess
consensus sequences for phosphorylation by cyclic AMP—dependent protein
kinase (PKA). Biochemical studies demonstrate that nNOS is phosphorylated
by PKA, protein kinase C (PKC), cyclic GMP-dependent protein kinase
(PKG), and calcium calmodulin-dependent protein kinase (CAM-K) (38-41).
Though investigators disagree on this point, it appears likely that phosphory-
lation by all of these enzymes decreases catalytic activity (41). Phosphorylation
may interact with other modes of enzyme modulation. For instance, NO stim-
ulates GC to form cyclic GMP which via PKG can inhibit NOS. Calcium-
calmodulin directly activates the enzyme, but phosphorylation via CAM-K
inhibits. Similarly, calcium activates PKC which in turn inhibits NOS through
phosphorylation.
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Regulation of mNOS expression derives from transcription factor binding
to the regulatory region of the gene. Characterization of the promoter region
of macrophage NOS by us (42) and others (43) has revealed multiple regulatory
sites. Two distinct regulatory regions exist upstream of the TATA box, which
itself is 30 bases upstream of the transcription start site. Region 1, 50-200 base
pairs upstream of the start site, contains LPS-related response elements. Region
2, 900-1000 bases upstream, does not directly stimulate NOS expression but
instead provides a further enhancement to the 75-fold increase in NOS expres-
sion that can be elicited by Region 1. Region 2 contains recognition sites for
interferon-gamma-related transcription factors.

This pattern of gene organization can explain certain aspects of inflamma-
tion. In sepsis following an overwhelming bacterial infection, LPS is released
from bacterial cell walls and circulates throughout the body eliciting inflam-
matory responses. By contrast, interferon-gamma is released locally, augment-
ing inflammatory responses only in certain populations of cells close to the
site of interferon-gamma release. Thus, the local elaboration of interferon-
gamma by infiltrating lymphocytes primes macrophages to give a maximal
response to circulating LPS. In this way, maximal production of NO occurs
primarily in cells at the site of the infiltrating lymphocytes—cells located in
a position to attack the invading microorganisms without damaging other
tissue.

NO in Neurotransmission and Neural Development

Localization of neuronal NOS has helped clarify many of its functions. In areas
such as the cerebral cortex, hippocampus, and corpus striatum, NOS neurons
compose only 1-2% of all neuronal cells; scattered in no obvious pattern, they
make up medium-to-large aspiny neurons (44). By contrast, in the cerebellum
NOS occurs in a high proportion of certain cell types. It occurs in almost all
granule and basket cells but in no Purkinje cells. The mode of NO action in
specific synaptic systems is best exemplified in the cerebellum, Glutamate
augments cyclic GMP concentrations in Purkinje cells, which receive input
from granule and basket cells. Granule and basket cells possess NMDA re-
ceptors. Stimulation by glutamate thus triggers formation of NO, which dif-
fuses to the Purkinje cells to activate GC. Whether GC is a universal target
for NO is not clear. If NO transmission exclusively utilized GC and if all GC
in the brain were associated with NO, then GC and NOS localizations would
be essentially the same. However, their localizations differ markedly, whereas
localizations of GC and heme oxygenase-2 (the CO-synthesizing enzyme) are
similar (1).

Clues into neurotransmitter function often come from co-localization with
other transmitters. The work of Hokfelt (45) has revealed that virtually all
neurons in the brain contain more than one neurotransmitter. In the cerebellum,
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NOS occurs in the glutamate-containing granule cells and in basket cells that
contain GABA. Some but not all the cerebral cortical NOS neurons also contain
GABA. In the corpus striatum, NOS neurons stain for somatostatin and neu-
ropeptide Y. On the other hand, in the pedunculopontine nucleus of the brain
stem, NOS neurons stain for choline acetyltransferase but lack somatostatin
and neuropeptide Y (46).

NO influences neurotransmitter release. NOS inhibitors block the release of
transmitters in various systems. In synaptosomes of the brain, neurotransmitter
release evoked by stimulation of NMDA receptors is blocked by nitroarginine,
whereas release elicited by potassium depolarization is unaffected (47). Glu-
tamate apparently acts on the NMDA receptors of NOS terminals to stimulate
the formation of NO. NO diffuses to adjacent terminals and increases neuro-
transmitter release. Thus blockade of NO formation inhibits release. On the
other hand, potassium depolarization triggers release from all terminals such
that effects of NO are not detectable.

PC-12 cells develop neuronal properties when stimulated with nerve growth
factor. Acetylcholine release in response to depolarization in PC-12 cells is
markedly stimulated after about 8 days of nerve growth factor application (48,
49). NOS staining and catalytic activity are not apparent in untreated cells but
develop 8 days after nerve growth factor stimulation, coincident with enhance-
ment of transmitter release. Acetylcholine and dopamine release from PC-12
cells is blocked by NOS inhibitors and reversed by L-arginine (47).

The peripheral autonomic nervous system has provided the most definitive
evidence that NO is a neurotransmitter. In our initial mapping studies we
observed NOS neurons in the myenteric plexus from the esophagus to the
rectum (46, 50). Physiologic depolarization of these neurons elicits relaxation
of smooth muscle associated with peristalsis. Blockade of this process by NOS
inhibitors indicates that NO is the transmitter (51-54).

Further evidence that NO functions in the peripheral autonomic innervation
of the gastrointestinal system comes from mice in which nNOS has been
“knocked out” by homologous recombination (55). These mice display mark-
edly enlarged stomachs and hypertrophy of the pyloric sphincter (55). Similar
abnormalities occur in the human disease infantile hypertrophic pyloric steno-
sis. Histochemical studies of stomachs of such patients reveal an absence of
NADPH diaphorase (NDP) staining in the pyloricregion(56). This observation
may help to account for the symptoms of the disease. The relaxing effects of
NO would normally facilitate propulsion of food through the pyloric sphincter,
just as NO is presumably involved in the relaxation phase of peristalsis
throughout the gut. Absence of NO would account for an abnormally tight
sphincter.

nNOS is found in the endothelial layer of blood vessels, but it also occurs
in autonomic nerves in the outer, adventitial layers of some vessels, especially
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larger ones (50). In the retina (57) and cerebral cortex (58), these neurons arise
from cells in the sphenopalatine ganglia at the base of the skull. About 40%
of these NOS neurons contain the neuropeptide vasoactive intestinal polypep-
tide (VIP), which may function as a cotransmitter regulating blood vessel
relaxation. In the penis, NOS neurons are particularly prominent in cavernous
nerve processes innervating the deep cavernosal arteries and sinusoids of the
corpora cavernosae, the erectile bodies of the penis whose engorgement with
blood leads to penile erection (59). Electrical stimulation of the cavernous
nerve in intact rats produces prominent penile erection that is blocked by low
doses of intravenously administered NOS inhibitors (59). Nerve stimulation—
induced relaxation of isolated corpus cavernosum stips is also blocked by NOS
inhibitors (60). These findings establish NO as the transmitter of neurons
regulating penile erection.

In the adrenal gland, NOS occurs in ganglion cells and fibers in the adrenal
medulla (50), where it may regulate blood flow (61). The function of the
prominent NOS neuronal fibers in the posterior pituitary has not been clarified
(50).

NO may participate in long-term potentiation (LTP), which may serve as a
model of learning and memory. While LTP can be demonstrated at many
synapses, the best-studied occurs in the hippocampus between terminals of the
Schaffer collaterals and CAl pyramidal cells. LTP requires the involvement
of both presynaptic and postsynaptic elements. Enhancement of transmitter
release by Schaffer collateral terminals is thought to require release by pyram-
idal cells of a “retrograde messenger.” NO had been advanced as a candidate
for the retrograde messenger role, because NO inhibitors interfere with the
establishment of LTP, as does hemoglobin, which binds NO (62-65). However,
immunohistochemical studies fail to reveal any nNOS in pyramidal cells (44).
Moreover, LTP can readily be demonstrated in hippocampal slices of mice in
which nNOS has been knocked out by homologous recombination (66). Even
more perplexing is the fact that NOS inhibitors continue to block LTP in the
nNOS knock-outs. A solution to this riddle may come from immunohisto-
chemical studies showing that endothelium of blood vessels is not the only
site of eNOS occurrence. Instead, we observe high eNOS densities in pyram-
idal cells of the hippocampus (67). In nNOS knock-out, eNOS localizations
in the pyramidal cells and other neurons and in blood vessel are normal (66).
While definitive evidence awaits studies in eNOS knock-outs, NO derived
from eNOS in pyramidal cells may well be important to LTP in the hippo-
campus.

The fact that NO is formed in neurons by two discrete NOS isoforms derived
from different genes may help to clarify the functions of NO in the brain,
Differences in localization of the two enzymes may be illuminating. Both forms
of NOS occur in the olfactory bulb, caudate-putamen, supraoptic nucleus, and
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cerebellum. However, only eNOS is concentrated in the hippocampus, both in
pyramidal cells of the CA1 region and in granule cells of the dentate gyrus.
By contrast, nNOS occurs only in small GABA-containing interneurons and
pyramidal cells of the subiculum. In the olfactory bulb the two enzymes are
differentially localized: eNOS occurs in neurons of the internal granule cell
layer and neuropil of the glomerular and external plexiform layers, whilenNOS
is found in individual neurons of the glomerular layer. nNOS is less prominent
than eNOS in neuropil in the external plexiform layer, though in the internal
granule cell layer its localizations are similar to those of eNOS. Neither eNOS
nor nNOS occurs in mitral cells. In the caudate-putamen, moderate amounts
of eNOS occur in small-to-medium spiny neurons, whereas nNOS is found in
medium-to-large aspiny neurons. Cerebellar eNOS is less prominentin granule
cells than is nNOS, and neither occurs in the Purkinje cells. nNOS (but not
eNOS) is evident in the superior and inferior colliculi, the bed nucleus of the
stria terminalis, and the hypothalamus.

nNOS neurons stain prominently for NADPH diaphorase (NDP), whereas
in most studies NDP is never detected in cells (such as pyramidal cells of the
hippocampus) that contain high levels of eNOS. Higher concentrations of
glutaraldehyde reveal eNOS as well as nNOS staining (67). Glutaraldehyde
fixation differs from formaldehyde fixation, which is conventionally used for
NDP, in that it is irreversible and produces many more intramolecular cross-
links than formaldehyde. Since eNOS is myristoylated and largely membrane
associated (68, 69), glutaraldehyde-containing fixatives should better preserve
the active form of eNOS by crosslinking it to other components of the plasma
membrane.

NO may play a role in development of the nervous system. Our immuno-
histochemical studies reveal transient expression of nNOS in discrete areas of
the developing rat nervous system (70). In the brain, transient NOS expression
occurs selectively in the cerebral cortical plate, especially at embryonic days
E15-19 in which the majority of the cells in the plate stain and their processes
pass to the thalamus. The innervation gradually decreases after birth and is
absent in adults. Similarly, in the olfactory epithelium nNOS occurs promi-
nently in neurons from E15 to early postnatal life. Inembryonic sensory ganglia
virtually all neuronal cells are nNOS positive, whereas in adult life only 1%
express NOS.

The function of NO in the developing nervous system is unclear. NO may
be trophic for developing neurons. Alternatively, it may help to elicit the
programmed cell death in which up to 50% of mammalian neurons die during
development. The limited amount of evidence now available suggests that NO
may be involved in cell death. For instance, NO-generating agents cause a
collapse of neuronal growth cones in regenerating dorsal root ganglion cells
(71). Although originally nNOS was not thought to be inducible, various forms
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of nerve lesion increase expression of nNOS. Following peripheral axotomy,
the percentage of NOS-positive cells in sensory ganglia increases markedly,
though not to levels evident in the embryonic ganglia (35). In the brain, lesions
of the medial forebrain bundle and mammillothalamic tract elicit nNOS stain-
ing in cell bodies of the lesioned fibers; this staining persists up to 5 months,
suggesting a neuroprotective role of nNOS action (72). Kalb & Agostini (73)
detectedtransientexpression of NOS in ventral horn neurons that contact motor
neurons in the first postnatal week of life; nitroarginine treatment blocked the
development of sciatic motor neurons. Studies in the spinal cord suggest that
NO formed by nNOS induced following lesions is responsible for cell death.
Thus, following ventral root avulsion or spinal cord transsection, motor neu-
rons display pronounced nNOS staining (34). The cells that display the aug-
mented staining ultimately die (74). Moreover, treatment of these animals with
the NOS inhibitor nitroarginine prior to ventral root avulsion protects the cells
from death (74).

A Role for NO in Neurotoxicity

Abundant evidence implicates NO as a mediator of neurotoxicity, especially
in response to glutamate. Following vascular stroke, large amounts of gluta-
mate are released that elicit neurotoxicity via NMDA receptors, a finding
supported by the protective effects of NMDA antagonists (75, 76). NMDA
receptor stimulation augments NOS activity, but NOS neurons are resistant to
NMDA neurotoxicity following NMDA stimulation of cortical cultures, both
in stroke and in Huntington’s and Alzheimer’s diseases (77-81). NO released
from NOS neurons in response to NMDA stimulation appears to kill adjacent
neurons: NOS antagonists prevent neurotoxicity in cortical culture, as does
removal of arginine from the medium and treatment with flavoprotein and
calmodulin inhibitors (82, 83). Low doses of nitroarginine block neural damage
following middle cerebral artery occlusion in mice, rats, and cats (84-88).
High doses of NOS inhibitors may exacerbate this damage, presumably
through decreased cerebral blood flow (89, 90). NO neurotoxicity may result
from the formation of peroxynitrite by the combination of NO with superoxide.
Such peroxynitrite should lead to the formation of nitrotyrosine in proteins.
Using an antibody to nitrotyrosine, J Beckman (personal communication) has
demonstrated dramatic staining co-localized with infarcted tissue following
middle cerebral artery ligation in rats. Particularly persuasive evidence for a
role of NO in stroke damage comes from the observation (90a) that stroke
damage is reduced by about 40% in nNOS knock-out mice.

NO may also mediate neurotoxicity in AIDS dementia, a puzzling condition
in which the HIV virus is detected at negligible levels in neurons. It is thought
that the gp120 coat protein mediates toxicity, as picomolar concentrations kill
neurons in primary cerebral cortical cultures in a fashion absolutely dependent
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upon the action of glutamate through NMDA receptors (91). We observed that
this toxicity requires NO because it is absent in arginine-free medium and
blocked by NOS inhibitors (92). Because gp120 toxicity requires the presence
of macrophages and/or astrocytes whose released cytokines and arachidonic
metabolites can potentiate NMDA receptor currents (93), we suspect that these
other mediators synergize with glutamate to trigger NO formation.

Further support for a role of NO in neurotoxicity comes from studies using
protective agents that indirectly block NO formation. Gangliosides are neu-
roprotective in both animals and humans with spinal cord damage (94-97).
They bind calmodulin (98, 99), inhibit NOS activity, and prevent NMDA
toxicity in neuronal cultures in proportion to their affinity for calmodulin and
NOS inhibition (100). Immunosuppressants, such as FK506 and cyclosporin
A, inhibit the calcium-activated phosphatase calcineurin by binding to the
immunophilins cyclophilin and FK-binding protein (FKBP); the drug-immuno-
philin complex then binds to calcineurin. NOS is a calcineurin substrate, as
phosphorylated NOS levels are increased by FK506 and cyclosporin A (101).
Because phosphorylated NOS is catalytically inactive, treatment with im-
munosuppressants is equivalent to treatment with NOS inhibitors. Both FK506
and cyclosporin A block NMDA neurotoxicity in low concentrations (101). In
liver transplant patients, the incidence of global cerebral ischemia is much
lower in patients receiving FK506, which penetrates into the brain, than in
patients receiving cyclosporin, which does not (102). The neuroprotective
effects of FK506 were demonstrated recently in focal cerebral ischemia (102a).
In rats with middle cerebral artery occlusion, cortical damage was significantly
reduced by FK506 treatment (102a).

How does NO exert its neurotoxic actions? In mediating physiologic syn-
aptic transmission, the best-established target of NO is GC. Because GC
inhibitors do not block neurotoxicity and because 8-bromo-cyclic GMP, which
penetrates readily into cells, is not neurotoxic, other targets must exist for
neurotoxicity (103).

Many other NO target molecules have been discovered (Table 1). NO
combines with nonheme ironin numerous enzymes suchas NADH-ubiquinone
oxidoreductase, NADH-succinate oxidoreductase, and cis-aconitase, all iron-
sulfur enzymes (37, 104). NO binds to the iron in ferritin, the iron storage
protein, liberating iron that can cause lipid peroxidation (105). NO also binds
to the iron of ribonucleotide reductase to inhibit DNA synthesis (106, 107).
Recent evidence indicates a role of NO in regulating iron metabolism. Iron
metabolism is influenced posttranscriptionally by mRNA-protein interactions
between iron regulatory factors (IRF) and iron-responsive elements (IRE) in
the untranslated regions of mRNA for the erythroid form of 5-aminolevulinate
synthase, the transferrin receptor, and ferritin (108, 109). IRF is identical to
cytosolic aconitase, which is converted to IRF when it loses an iron and is
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transformed from a protein with aconitase catalytic activity to a protein that
binds IRE. By binding to iron, NO stimulates the IRE-binding function of IRF
while diminishing its cytosolic aconitase activity (110, 111). Stimulation of
macrophages with LPS or interferon-gamma to produce NO activates IRF
function (110, 111). NMDA acting through NO similarly stimulates IRF (112)
(Figure 2). IRF occurs in discrete neuronal populations, suggesting a selective
synaptic function (112). Though IRF and NOS do not co-localize fully, struc-
tures enriched in IRF, such as granule cells of the cerebellum and the olfactory
bulb and the dentate gyrus of the hippocampus, also have high densities of
NOS. IRF may be sensitive to oxidants other than NO and may couple cellular
responses to oxidative states. Influences of NO on IRF might regulate the role
of fatty acids in cellular energy dynamics. By diminishing cytosolic aconitase
activity, NMDA synaptic transmission would make more citrate available for
cytosolic citrate lyase, which converts citrate to acetylCoA and oxalacetate.
Cytosolic acetylCoA is prominently incorporated into fatty acids that provide
an energy reservoir for neuronal function during states of oxidative stress.

NO regulatin
g 0 —> IHE-mRNE\’s

Aconitase r, IRF
TiR Ferritin
mRNA . g mANA

protecting mRNA inhibiting translation
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Figure 2 NO activation of IRF in regulation of cellular iron homeostasis. Glutamate (Glu) binds
to N-methyl-D-aspartate receptors (NMDAR) and causes calcium influx. Elevated intracellular
calcium activates calmodulin (CaM), which in turn activates NOS to produce NO from arginine
(Arg). NO removes iron (Fe) from cytosolic aconitase, converting it to iron-responsive factor (IRF).
IRF regulates iron metabolism through binding to iron-responsive elements (IRE) in a number of
mRNAEs that encode proteins related to iron transport and storage. If the IRE is located at the 3’ end
of mRNA [e.g. transferrin receptor (TfR) mRNA}, IRF binding stabilizes the mRNA and increases
translation. If IRE is located at the 5’ end of mRNA (e.g. transferrin mRNA), IRF binding prevents
the translation.
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Table 1 NO targets®

Interaction sites
or modification

types Target molecules Functional consequences References
Heme Soluble guanylyl cyclase Increased cGMP 7
Cyclooxygenase 1 & 11 Increased prostoglandin E, 130-133
Cytochrome P450 Impaired detoxification 134, 135
Nonheme-iron Cytosolic aconitase Inhibition of glycolysis, activa- 110-112
tion of IRF to regulate iron
metabolism
Mitochondrial aconitase Inhibition of glycolysis 37, 104
Complex I and II Inhibition of respiratory chain 37, 104
Ferritin/transferrin Iron loss and lipid peroxidation 105
Ribonucleotide reductase Inhibition of DNA synthesis 106, 107
Nitrosylation NMDA receptor Block of Ca2* influx 136
Protein kinase C Inhibition of phosphorylation 137
GAPDH Inhibition of glycolysis, enhance ~ 115-117
ADP-ribosylation
Ca*-dependent-K*- Activation, vasorelaxation 138-140
channel
G proteins Activation, causing NF-«B 141
translocation
Tyrosine phosphatase Activation of pS6'k 142
Albumin NO carrier activity 143
t-PA Vasodilation and antiplatelet ac- 113
tivities
Glutathione Activation of the hexose 144
monophosphate shunt
Superoxide Zn, Cu-superoxide dis- Tyrosine nitrations 145
mutase
(ONOO~ forma- a-Tocopherol in LDL Oxidation 146
tion)
DNA strand break PARS activation 124, 147
GAPDH Inhibition of glycolysis 122
Deamination DNA Mutations and strand breaks, 124, 148

PARS activation

? Abbreviations: IRF, iron-responsive factor; complex I & II, NADH-succinate oxidoreductase and NADH-
ubiquinone oxidoreductase; NMDA, N-methyl-p-aspartate; GAPDH, glyceraldehyde-3-phosphate dehydrogenase;
NF-«B, nuclear factor «B, a transcription factor; t-PA, tissue-type plasminogen activator; ONOO™, peroxynifrite;
LDL, low-density lipoproteins; PARS, poly(ADP-ribose) synthetase.

NO can stimulate the S-nitrosylation of numerous proteins (113, 114) as
well as the auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydroge-
nase (115-117). The covalent modification of GAPDH by NAD was initially
characterized as a mono-ADP-ribosylation. Kots et al (115) and Dimmeler et
al (118) determined that radioactivity could be incorporated into GAPDH from
[adenylate-*C]NAD but not from [nicotinamide-*C]JNAD, suggesting that
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ADP-ribose, but not the nicotinamide moiety, was transformed to GAPDH.
However, McDonald & Moss (119), under different conditions, observed the
full NAD molecule covalently linked to GAPDH through an NO-dependent
thiol intermediate. The exact chemical nature of the modification may be more
complicated than what was originally conceived. Recent isoelectric focusing
gel analysis resolves at least three species of NO-enhanced NAD-modification
of GAPDH. The major labeling spots comigrate with ADP-ribosylated
GAPDH (120). The exact species of NAD-modified GAPDH in the intact cells
is not yet established.

NO-enhanced ADP-ribosylation of GAPDH inhibits its enzymatic activity
(116). Although the stoichiometry of ADP-ribosylation of GAPDH is generally
less than 10% (115, 117), inhibition of GAPDH by NO is usually more than
50% (121). Apparently, the direct NO modification of cysteine 149 at the
catalytic center of GAPDH accounts for the inhibition (121). This NO-modi-
fication of GAPDH can also be mediated through peroxynitrite (122).

There is accumulating evidence that endogenous NO production enhances
ADP-ribosylation of GAPDH in vivo. Dimmeler et al (123) showed a corre-
lation of interleukin-1pB-~induced NO production with the increasing of GAPDH
ADP-ribosylation in RINmSF cells. In LPS-treated mice, GAPDH activity is
reduced in heart and spleen. Thus, NO-induced GAPDH inhibition may con-
tribute to NO cytoxicity by impairing energy production (123).

The best-established candidate for mediation of neurotoxicity by NO is poly
(ADP-ribose) synthetase (PARS). Cell death appears to follow NO-mediated
DNA damage, which stimulates PARS activity (124). PARS is a nuclear
enzyme that utilizes NAD as a substrate to attach 50~100 ADP-ribose units to
nuclear proteins such as histones and PARS itself (125). NO stimulates poly
(ADP-ribosyl)ation of PARS in brain tissue (124). Moreover, NMDA neuro-
toxicity in cortical cultures is blocked by PARS inhibitors in proportion to
theirpotencyin inhibiting PARS (124). Thus NO neurotoxicity may commence
with NO damage to DNA, which activates PARS, depleting cells of NAD and
ATP, because four molecules of ATP are consumed in NAD regeneration.
While massive stimulation of PARS kills cells by energy depletion, PARS
activation by lesser degrees of DNA damage presumably facilitates DNA
repair.

PARS activation by damaged DNA enhances DNA repair by relaxing chro-
mosomal structure through poly(ADP-ribosyl)ation of histones, high-mobility
group proteins, and nuclear matrix proteins; and by coordinating, through
poly(ADP-ribosyl)ating, key enzymes involved in DNA metabolism such as
topoisomerase I and Ca2*,Mg2*-dependent endonuclease. Ribonucleotide re-
ductase, a rate-limiting enzyme for DNA synthesis, is inhibited by NO (106,
107). Thus, DNA repair is delayed owing to a short supply of deoxyribonu-
cleotides so that PARS activation is prolonged. Meanwhile, the constitutive
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Figure 3 NO-mediated neurotoxicity. DNA damaged by NO or peroxynitrite (ONOO") activates
poly(ADP-ribose) synthetase (PARS), which coordinates DNA repair through poly(ADP-ribo-
syl)ating itself and other proteins involved in DNA metabolism, such as histones, high- mobllny
group proteins (HMGPs), nuclear matrix proteins (NMPs), topoisomerase I (Topo I), and Mg s
Ca?* -dependent endonuclease (EndoNuc). NO inhibition of ribonucleotide reductase (RR)
diminishes the deoxyribonucleotide triphosphate (INTP) supply for DNA synthesis. The delayed
DNA repair prolongs PARS activation. At the same time, constitutive poly(ADP-ribose) glyco-
hydrolase rapidly degrades poly(ADP-ribose). Four ATPs are needed to resynthesize nicotinamide
adenine diphosphate (NAD) from nicotinamide (Nm). PARS and poly(ADP-ribose) glycohydrolase
form a futile cycle that decreases NAD, depletes cellular energy, and ultimately leads to cell death.

poly(ADP-ribose) glycohydrolase is rapidly degrading poly(ADP-ribose). To-
gether, PARS and poly(ADP-ribose) glycohydrolase form a futile cycle to
deplete NAD. Because it takes four ATPs to resynthesize one NAD from
nicotinamide, a sustained consumption of NAD will deplete ATP, and the
resultant drop of cellularenergy level may be lethal (Figure 3). PARS inhibitors
also protect against NMDA toxicity in mouse fetal cortical culture (126) and
against NO toxicity in hippocampal slices (127).

NO activation of PARS is not restricted to neurotoxicity. Inhibition of insulin
secretion associated with damage to islets of Langerhans is induced by inter-
leukin-1P and tumor necrosis factor-0. derived from activated macrophages,
which may contribute to type I diabetes (128). PARS ‘inhibitors can rescue
NO-mediated damage of islet cells (129).
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